\qquad Hour \qquad

Bucket Days on Everything for points ©

Each day these questions from quarters 1 and 2 will be in the bucket.

Unit I) Introductory Material

1. What does it mean that physics is cumulative?
2. What does SI stand for? \qquad
3. How many centimeters are in one inch?
4. How many meters are in one mile?
5. How many centimeters are in 1 meter?

Unit II) Motion in One-Dimension

6. What does that mean when we say motion in one-dimension?
7. What is Δx and what unit is it measured in?
8. What is Δy and what unit is it measured in?
9. Why can you interc hange Δx and Δy in the one-dimensional motion equations?
10. What is the unit for velocity?
11. What is the unit for acceleration?
12. What unit is Δt typic a lly measured in?
13. What quantity does the slope of a distance vs. time graph give you?
14. What quantity does the slope of a velocity vs. time graph give you?
15. What doesa straight line on a distance vs. time graph mean?
16. What doesa straight line on a velocity vs. time graph mean?
17. What doesthe area under a velocity vs. time graph give you?
18. When can we use $v=\Delta \underline{x}$?
19. When is the acceleration of an object equal to $9.8 \mathrm{~m} / \mathrm{s}^{2}$?
20. When you drop an object near the earth's surface, what two variables do you know?
21. If you throw an object straight up, what is the speed at the top of its flight?
\qquad Hour \qquad
22. If you throw an object up and it takes 4 seconds to reach the top, how long is it in the a ir?
23. If you throw an object straight up and it is in the airfor 3 seconds, how long did it take to reach the top of its flight?

Unit III : Vectors

24. What is a scalar?
25. What is a vector?
26. Give an example of a quantity that is a scalar.
27. Give an example of a quantity that is a vector.
28. What is the sum of two or more vectors called?

UnitIV : Projectile Motion

29. What does ay equal?
30. What is v_{x} ?
31. What is $\mathrm{viy}_{\mathrm{i}}$?
32. Why can't you interchange Δx and Δy when solving two-dimensional motion problems?
33. If you drop a bullet and shoot a bullet horizontally from the same height, which one will hit first in a vac uum where there is no air resistance?
34. If you drop a bullet and shoot a bullet horizontally from the same height, which one will hit first when there is air resistance?
35. If an object is shot horizontally, what does $v_{i y}$ equal?
36. What is a projectile?
37. Give an example of a projectile.
38. What Greek letter do we use to represent an angle?
39. If a projectile is fired at an angle with velocity v , which trig function can we use to find v_{x} ?
40. What happens to the velocity of a projectile in the xdirection throughout its flight and why?
41. What happens to the velocity of a projectile in the y direction throughout its flight and why?
\qquad Hour \qquad
42. What is v_{fy} ?
43. Why can't we use $\mathrm{a}_{\mathrm{y}}=\left(\mathrm{v}_{\mathrm{fy}}-\mathrm{v}_{\mathrm{i}}\right) / \Delta t$ when we shoot a projectile horizontally?

Unit V: Newton's Laws and Forces

44. What is a force?
45. What unit do we typically use to measure force?
46. What is Newton's $1^{\text {st }}$ Law?
47. What is Newton's $2^{\text {nd }}$ Law?
48. What is Newton's $3^{\text {rd }}$ Law?
49. What exactly is a Newton? (not just a unit of force - actual definition)
50. Which one of Newton's Laws says that for every action there is an equal and opposite reaction?
51. Which one of Newton's Laws says $F=m a$?
52. Which one of Newton's La ws is this?
a. An object at rest remains at rest and an object in motion rema ins in motion unless acted upon by an outside force?
53. What is inertia?
54. When jumping out of a plane with a parachute, what two forcesare acting on you?
55. What is the mathematical relationship between vector F, F_{x} and F_{y} ?
56. What is one of the two cases when equilibrium can occur?
57. If an object is in equilibrium, what is the sum of all of the forces acting on it?
58. A $400-\mathrm{N}$ woman sits on the floor. What force does the floor exert on her?
59. Which hasmore mass, a kilogram of feathers or a kilogram of iron?
60. What is mass and what unit is it in?
61. What is weight and what unit do we measure it in?
62. What quantity do you get if you divide weight by mass?
63. What unit do you get when you divide force by a cceleration?
64. What isteminal velocity?
\qquad Hour \qquad
65. What is the acceleration of an object equal to when it reachesterminal velocity?
66. What is a g force?
67. If you know your mass in kilograms, how could you find out what one g force is for you in Newtons?
68. How do you find the number of g's? (equation)

Unit VI: Work and Energy

69. What is the unit for work?
70. How many Watts are in a kilowatt?
71. How many Wattsare in one horsepower?
72. What is one of the three units we use for power?
73. What unit for power will come out in the equation $P=W / \Delta t$?
74. What is the definition for potential energy (P.E.)?
75. What is the definition for kinetic energy (K.E.)?
76. What is the kinetic energy of a cat that is sitting still and is 2 meters off the ground?
77. What is the conservation of energy?
78. What is one quantity we measure in J oules? (3 possible answers)
79. What quantity could be measured in Newton-meters?
80. What quantity do we measure in Watts?
81. A baseball is dropped off a roof. As it falls, what happens to its potential energy?
82. A baseball is dropped off a roof. As it falls, what happens to its kinetic energy?

Unit VII: Momentum and Collisions

83. What is the variable for momentum?
84. What is the unit for momentum?
85. What is the momentum of a school busparked outside?
86. What is the equation formomentum?
87. When you catch a water balloon, what variable do you control as you cradle it?
\qquad Hour \qquad
88. What two variables does momentum depend on?
89. What is the conservation of momentum?
90. What is an elastic collision?
91. What is an inelastic collision?
92. Give and explain a real-life example when the concept $F \Delta t=m \Delta v$ is used.

Unit VIII: Circular Motion and Gravity

93. What does " T " represent and what does it mean?
94. What is the period when it comesto circular motion?
95. What is the period for the earth's rotation on its axis? (in hours is fine)
96. What is the period for the earth rotating a round the sun? (in days is fine)
97. What is the equation forthe speed when an object is moving in a circle at a constant speed?
98. What is the difference between centrifugal force and centripetal force?
99. Which one is not a force, centrifugal force or centripetal force?
100. What happens to the acceleration due to gravity asyou move furtheraway from the earth's surface?
101. What does the Universal Law of Gravitation tell us?
102. What 2 variables does the Universal Law of Gravitation depend on?
103. In order for an object to stay in a consistent orbit, what two forces must be equal?
104. In the pendulum equation, what is the letter L ?
105. When you increase the length of a pendulum, how doesit affect the period?
106. When you increase the mass on the end of a pendulum, how does it affect the period?
107. An object moving at constant speed in a circle is accelerating because...
108. Newton believed every object \qquad every other object.
109. T is the same as Δt.
